Table of Contents Table of Contents
Previous Page  652 / 798 Next Page
Information
Show Menu
Previous Page 652 / 798 Next Page
Page Background

Catoptric~

éhque

ut

prius perpendiculari CD, junll:aque

li-

HG,non íecare hyperbolan1 in aliqtto P!tnél:o in·

nea llC,ducarur lmea CO,perpendicólaris ad llD,

ter H , & C, pofito verbi gracia in pmrll:o

!.

Ar-

dico l111eam CO, ita duci uc non attingac hyper–

bolam ultra punél:mn C veríus H, in nullo enim

puné\:o attingere pottll hyperbolarn,Nequc enim

atringec in punél:o H. Ducan:r enim linea HCI,

&

DH, icem pcrpendicularis HF,

&

llH.

Demonllrario. Gum augulus DFH

fo¡

ponatur

reél:us , (

per

1

7 .

i.)

erit lacus DH, rnajus lacere

!?

\":!.

Sunr aurem (

per cor.

1.

pr.cedemu)

lineo:

ingar enim fi fieri porel1: punéh1m 1,ducatur ra•

dius

BI,

perpendícularis

10,

&

linea IF.

Demonftratio. Cum in criangulis BIG, FIG,

angtlli in punél:o G fine rell:i, irem linea: DG,GF

:z:quales,

&

GI, communis (

per

4.

1. ) crunc·ba–

fes Bl,Fl :z:quales; íed jam

(ex defcrirtionepara–

rabol~)

linere BI, ID :z:qnales Íunc: igicur line:z:

ID, IF effcnt requalcs, quod abfurdum ell:, cum

angulus D rell:us !ir.

C O R O L L A R 1 U M.

FH,

llH :z:quales; igirur linea DH major eft re–

lh

BH. In criangulis aurem DCH , BCH, cum

latera llC, CD, (

per cor.

1. )

fint :z:qualia,larus

CH commune,& pafis DH major oftenfa

lit

b~fi

BH

(

per

5.

1.)

erir

angulu~

DCH, íeu

!CK ,

illi

ad verricem oppofirus , rnajor angulo llCH;

ha–

benr aurem communem angulum llCK , ignur

anguJus ICll, major eft angulo KCH,

&

i\11 op–

poliro !CD. In rtiangulis igicur ICD, IGB, cum

latera DC, llG linr :z:qualia;

&

larus CI commu–

nc, item angulus IGD minor angulo IC!l (

per

25.

1.) etit bafis

ID,

minor bafi ll I; quare per–

pendiculatis CO,qu:z: dividir bifariam lineam llD

cadet infra punél:um

l,&

poft punél:um

e,

cadet

fupra punél:um H ; ergo non fecabir hyperbolam

in

punél:o H. , Quod auccm demonlhavimus de

punél:o H,ollendam de quoliber alio punll:o; igi–

tur non arring'ct hyperbolam ultra punél:um

C.

Rcftu

nr

oftendam cam lineam non atringere

Sequimr ex hoc lcmmare lincam HG

dfe

ran-

hypcrbolam ince( punél:mn G, & punll:um A. Sir

gemern parabol:z:, cum nullibi attingar parabo-

enim hyperbola in

~ua

paricer punll:um A

lit

ver-

lam, nili in puné\:o H.

tex, Bfocus, lirque punél:um

H.

Duc~tur

parirer

'

pcrpendicularis HF,

&

radius BH , 'conjungacur

l1.!l!Z!illll!!ilflllflllllfl®'®llfl;l1.!l,lll.\ll!ll1.!lllill1.!l!1:!!!1.!ll1.!l~llli

linea llF ," fecans hyperbolam in puné\:o C ; dico

fi

a

punll:o

H,

ducamr perpendicularis ad BF,

hrec rota cader exrra parabolam.

. H:r:c enim perpendicularis HG,ur fupra ollen–

c!Jmus,dividir bifariam lineam llF, c!im autem li–

~e:z:

llG, CE lint :z:qualcs,

&

linea

CF,

!ir

tpajor

!mea CE.propter angulum rell:um E,erit CF,ma–

jor quam C ll ; ergo punébum in quo

13F

divide–

cur bifariam' erit ultra

e ;

ergo ¡am habemns

quod linea HG,uon atringit punél:um C fcd 'cadic

extra.

Neque eriam aninger ullnm punll:um imer

A

&

e

polimm ; attingar cnim

6

fieri poteft pun–

Ctum

1,

ducaturque perpendicularis 10,radius lll

&

linea IF.

'

Demonftmio.

ln

triangulis.BGI, FGI,cilm ;

111•

guli ad G, linr rcél:i, irem line:z: BG, GF requales,

&

IG, communis; crunt linere Bl,IF req1alcs;fed

l

D,

l

B,

funt

jam :z:quales

(

ex

de(criptione

h)•perbol~;)

ergo line:r: ID,

IF

etfenr :z:quales,quod

ell:

abíurdum, cum angulus D

!ir

reltus.

Denique affero lineam ex punél:o

H

dnél:am

l'~'pendiculariter

ad lineam

BF ,

fcilicct

lmeam

P R O P O SI T l O XX l. ·

Theorema.

Parabola

tmiHadios

º'"''"

axi

earallelos

Ín

¡nm[/o

foci.

Sir paraboJa ctijus vemx A, focus

B.

_axis

All;

incidar radius DC axi

AB

parallelus, d_ico

11l~m

rdlcél:endum in focum B. Ducatur ·en1m radms

BC, concinuemrquera·dius

OC,

íir~uc

AG, ipíi

AB requalis , ducarur perpendiculans CE.. ltcm

!mea BE ad quam

CJ!;

punél:o

e

ducarur perpen–

dicnlaris CF, qure

(per

lemma

fi•perius)

rangcr pa-

rab~~~~¿nll:ratio.

Radius incidensDCE 'cum lit

parallelus axi ·BA , qui perpendicularis ell: linc:r:

GE, perpendicularis ctiam•erir ad eandem

Sunr ergo line:z: BC, CE :z:quales,

(per deflr.iptio–

nem

parabol~

fi•pra

traditafn.)

~rnre

in

rrian~u­

lis

fEC ,

llFC, cum angllli ad

F

lim

~c~i;o,&

F<;'.

larus