Table of Contents Table of Contents
Previous Page  456 / 798 Next Page
Information
Show Menu
Previous Page 456 / 798 Next Page
Page Background

· .

Optic~

!l!!'ílf!ílf!:~!l!11l!l1ll:!lll:!ll!llll!l@l!illl!l!lfi!l'll!J:¡jll!lll111lWllloo

Ehzng11la in E, erit ergo

(

per

47.

1.)

quadra111m

PRO.POSITIO XXV.

Theorema.

.AC

~q11ale

quadratu EA , EC, jicut q1111dratum

Af,

~qua/e

q1rndra1u AE, Ef,

&

q11i11

(

per

7.;.)

EC m11¡or eft, q11/11" EF, ern111q1Mdr,,ta AE,EC

major11 9111draru

AE,

EF,

&

confeqrm11er linea

Si magnitudo in cemro circuli ercllajit perpend'.-

AC major,qwim AF.Eodem modo oftendam linearn

citlariter,

&

oculU6

maveatur

in

circumfannt•a

AD mfl.jorem e/fe

linea

AC;

ideoque

mm

in tr;an-

cirfuli, magni111do[cmper apparebit

4<f""J;1.

gulif ABE, ABC latera duo

fim

~qualia

mrttmque

utriqt«, nempe AB comm1me, BF , irem

&

BC

Sir magnitudo AB , crcél:a

perpendicularir~r

( per def. circ. )

jint

~q11alia

,

&

bajis AC

Jit

ma-

in centro circuli

B.

Oculus aurem, movearur 1n

jor bafi

1

AF,

erit (

per

15.

1.)

ang11IUJ ABC ma–

jar a11g11/o ABF.

I ta

ojf~ndam

,mg1ilum ABD,

majorcm ej]e ang¡¡/o ABC.

A

. circumferentia circuli. Sirque íucccffivc in C,

&

D . Oico rnagnitudinem AB videri íub eodem an–

gulo in C

&

O,

fe"

angulas ACB, ADB a:qua–

les effe.

Demonílratio. In triangulis ACB, ADB, cum

latus AB

Ílt

commune,& latera BC, BD (

per def

circuli)

fine a:qualia ,

&

anguli ABC, ABO finr

a:quales , urpote rell:i , erunr (

per

4.

1. )

angnli

ACB,ADB 'a:quales; quod erar demonílrandum.

L

E M M A.

Si linea ad plamnn inclin11ta jit,

&

ex

e

jiu

pun–

Efo in fi1blirni dimittar11r perpendirnlarú, ang11-

lm q11i

fiet

a

linea duE!-a

a

p11nEfo

in

quod cadit

perpendic11laru ad lineam obliquttm

'

&

a

linea

obliquA; niinimiu efl,

ttl1i

pro,1.t ab to recedent

fimt majorts, maxim™

qui

rninimo contigm-u eft.

Linea AB cadat obliq1ú

in

plan11rn CD

,

&

ex

e

pw1ffo

A

demittamr

perp~ndicularú

AE

ad pla–

n11m; dico .wg11l111n

EB

A effe mininl11m

,

qHi

fiet

a

lineú in plano CD duéfo

,.d

ptmEfom

B,

&

pro–

d11Eft. line!i

E

B

in

D.

Dicó angulum A B D ejfo

maximum. Fiat

enh-11

ex

p11nf10

B

, m

umro

fo..

tervallo majori quam BE c1rc11I.u CD fi1mant11r–

q11e prmEla CD. Ducamrque linea BC. Debeopro–

bare angulum

ABE

minort7n ejfo, q11am ABC,

&

ABC 11y11ore•

q11am

AIJD. D11ca!11m· line.t

.AD,

AC.

Demo11f/r11tio, Triangula AEF

,

AEC fimt re-

illlll!lllll~00·001m!ll1.!1i

¡¡¡¡,¡¡¡¡g¡¡¡¡:¡¡llMimll!l!lli:!!llll

PROPOSITI O

XXVI.

Thcorema.

Si linea ad plan11m circ11li fuerit obliq11a, 71ravea–

wrq1<e in ejt<J cirmmferenr

ia

femper fibi ipji

paral/ela,

OGll/O

in Centro conjifte11tc, eo appa–

rentiam mirlorem habebit

h.tc

linea

'l"º

remove–

b11,.r magis

a

diarnctro cu

m q1

111 minorem ang"–

liim facit•

Sir linea AB obliquc incidens, in.planum cit–

culi BDF, Íupra cujus circumferentiam moV'ea–

tur in lirn íemper parallelo. Sirque oculus in C

immotus. Er

fir

ira AB uc

Ílt

A~C

minimus an–

gulus quem facir ha=c linea cum lineis duébs in

plano circuli , hoc eíl: perpendicularis ex punél:o

A dull;a cadat in BC. Dico AB eo minorem ap–

.parent1am habere, quo magts removerur

a

diame–

rro BC, hoc eíl:

(j

AB transferarnr in DE., angu–

lum OCE. minorem effe angulo llCA,item anau–

lum DGE majorem effe angulo FCG.

Ducan~ur

enim linea: AC , EC, GC, irem linea OH paral–

lela diamerro BC.

E

. Demon!hado

linb

D E fupponitur parallda

!mere AB, linea OH dlléh etiam eíl: parallela

li–

nea: DC; ergo (

per

10. 1

t.)

anguli ABC, DHE

Ítmr requales ; cíl: aucem

(per Lemmafl•peri1<1)an–

g11lus EDC: majar quam EDH,ergo angulus EOC

majar eíl: angulo ABC , ergo reliqui duo íimul

DCE, DEIS minores funr duobus fimul BAC ,

BC A. Sinus amem anguli DCE, ad finum anguli

DEC re haber, (

per primam tertii Trigon.)ut

DE

ad OC, Íeu ur AB ad BC, Ílcut (

per eandem

)

fe

lubet finus angu\i ACB ad finum anguli B A C,

~rgo

ut linus anguli DCE ad finun¡ anguli DEC,

Ita finus anguli BCA ad finum anguli BAC : íed

aggregatum duornm priorum angnlornm,

mi~us

eíl •ggregato poíleriorum lit jam oíl:endimus,1g1-

tur angu.\us OCE, minar cíl angulo ACB quoci

erar oílendendllm.

p

R oP ·O