Table of Contents Table of Contents
Previous Page  265 / 798 Next Page
Information
Show Menu
Previous Page 265 / 798 Next Page
Page Background

Liber

I V.

2.

35

rium lit fegmentum loxodromia: refpondens mu–

tationi loritudinis

1

o minutorum , invenioque in

primo rumbo

1 0~;;,

in fecundo

ro~~,

&

iC3

de

alris: quare per additionem folam cj11fdem mune–

ri ror•m cabnlom pedicio , ira in reliquis rumbis.

p

0 {i¡i aurem fraéHonem adhxremem,quia nili

illa

addcremr, crefceret dcfelh1s per icerotam omií–

úo1Íem.

IJlj.~lll:l:lll.lti'!!lllll

:llll:lll1.llfll

11!1'.l.ílll1.lll1.l1lll'1lll1lll1lll1lll!)jll1.f.l

P R O P

ó

SI TI O

X.\

Problema.

D.11a 1111<Mtione latimdinü

,

&

dijtantia termi–

nomm conc/lldere romb111n.

~1amvis

hrec 'propofirio non lir nccerfaria ad

conficiendam rabulam , poreíl: rnmcn milis erfe,

ad cognoícendum rnmbum per qucm iníl:icuenda

e(l:

navigacio.

Suppono ergo navim folvere

ex

quadrageíimo

parallelo,

&

pcrven11fc ad dccimum, pcrfcc1fteq11e

poceíl:ace '

íeit

virtute conrincc longimdinttn•

Fiar ur Ílnus rorns

ad finum anguh loxodromici,

ica Loxodromia in m1l\laribus

ad lams mccodynamicum , fcu

ad

lacera DD,

GL, HM, 1N fin:ul fumpca in

miHi~ribus,

qua:

finnma

a

nonnulhs nom111amr m1lharia Ell

&

Oüeíl:, fcu milüaria longirndinis.

S11ppon2nmr confeél:a milliari• 998. in tertio

rombo, cujus inclinatio gr2du11m

l l ·

~5.

lnflimo

rcg11l2m crium, in qua primus numcrns efl finus

roms, fecundus cric

55 517>

finus gradu11m ;

¡.45.

cercius 998 mille. Mulriplico duos ultimos 1111mc–

ros,

&

ex produél:o

íí

44

¡

886 abfcindo quinq11e

figuras, habeoquc

5

54

s~

pro crure mecody–

namico. Difliculcas aurcm erir uc hxc milliaria

reducomur ad gradus,

&

minuta. Si enim naviga–

tio fuic prope equarorem,panciorcs gradus , con–

licient hujufinodi milliaria ; fi rcmotior fuir ab

a:quarore, piures, quia nempe gradus pm11lclo–

rum vicinorum a:quarori longiorcs

fom.

Quare

ur

milliaria ad gradus rcvocenrur , debcmus fcire

quor millioria,cujuílibcr paralleli gradus habear.

ll

!ll1.f.lS

!!@lfll1ll!Wll'll1lllll1!1ll1:1JIJ!l1Jlmriil!ll!=lill¡¡:¡j:1Jllllt!llil

PROP O S IT10 X I I.

Problema.

C

D11ta mmatione /111í1t1dinú,

&

angulo lo.vQdromi•

milliaria 680,qua:rimr rombus per qucm falta eíl:

navigario. Debco in triangulo CDK iníl:imcre re–

gulam trium , nempe

lit

DK

680

ad KC decem

graduum Ícu minmorum

600 ,

ita finus roms ad

íinum anguli KDC complcmentum anglJli loxo–

dromici Gr.18+min. nempe incer íecundum,

&

terrium rombum.

00!1!l!l!!W1lll!111iltlll!l'ilt!Wlltl·iltllj¡¡l\'il001l1!!l!J.!líllli!!Jl\®

P R O P O S 1T 1O

X l.

Problema.

Dttto ang11lo loxodromi.t,

&

iti11ere confoilo

Íll–

venire

""'

mecod)•namiCllm.

Vide

figur•m

pr:zccdcoccm.

Vocamus latus mecodynamicum, aggregatum

arcuum diverforum par2llclorum; nempe cum lo–

xodromiamdividamus in minuriffimas parres,qux

fcnGbiliret

~

linea reéh non rcccdonr, formamus

toridem criang¡1la, qux ln bent pro uno latere ar–

cum

p~alleli.

Ur in eadem figura formatis qua–

~uor-<_nangulis

poffum facilc per uigonornerriam

mvemrc quoc milliaria concineanc,arcus DD, GL,

HM,

1

N, qux in millianbus xquolia Íunt, non

aurem in numero graduum, aut mmurorum.Poffu–

mus ígirur per un•m malogiarn invenire fummam

illorum atcuum in milliaribus,

&

!une íummam

vocarnus larus mccodyn3mic11m , quod ncmpc

Tom,

111.

.

co

invenir•

latsu mecody1111mirnin.

Vide

figur2m

przccdcntcm.

In

eadem figura liar ur /inus torus ad tangen·

,., tem anguli loxodromici , ira muratio larirudinis

fumpra

m

milliaribus, ad latus mecodynamicum ,

fcu

ad r11illiaria longimdinis.

Demon{hario. In criangulis DGD, GHL HIM,

IKN eadem ell ratio GD ad BD, HL ad GL,IM,

ad MH, KN ad N l,ac finus

totiu~

ad tangemcm

anguli DGD.

~tare

ira erunc omnia latera lati·

mdinis, íeu mmacio latirndinis ad milliaria longi–

cudinis ;

lit

finus rotus ad rangemem anguli lo·

xodromici.

'

llllJ!!lll!llll® lill1l1!1l'111lllWíillll1.lll1\W.1l!J®lill·@ll1.lrit!·!lf.!

PROPOSITI O

'X ll l.

Problema.

Data m111111ione l111iwdinü,

&

itinere confa&o, rt–

ptriie cnu mecodynamirnm.

Vide

figumn

przccdantcm.

Suppono in eadem figura cognofci rnum10-

ncm latirndinis C K

&

ircr confrél:um C K, Ít1b·

traho quadrarum larirndinis in milli2ria redaaa,

ex c¡uadraro loxodromia: DK , rcflabír quadro.w.m

crucis mecodynamici,Íeu m1lli2riurn longirudinis.

&

exrrahendo radicern quadrararn, habcbunrnr

ipfa milliuia longirudinis.

&

Dcmoníl:ratio. In triangulis BGD,

B~;.~is :~

quadrara BG, GH,&c. a:quaha funr qu•

KC

GD,BD; HL,GL,&c. Sed rora

BKi~~;o:~~G

ad

&

ad roram BD eandern h2bcr r•<

.

GD

&

BD,igicur qu>dramrn

e~

B K 'zquole ene

quadraco ex CK,

&

quadrac~

linea: comp'.lira: ex

BD, GL, HM, IN. In prax•,duplus _logamhmus

KC,ex du Jo logarichmo BK;_reíl:lbll dup_lus lo·

p

G g

IJ

gamhmus

,