Table of Contents Table of Contents
Previous Page  261 / 798 Next Page
Information
Show Menu
Previous Page 261 / 798 Next Page
Page Background

Liber

IV.

DE

NAVIGATIONE

L I BE R

Q

V AR T

V

s.

De Loxodromiis.

f/

A M

f/

¡

S

faimtia Loxpdromica videat11r dtflicili>

,

earamq11e theoria

Jit–

perare cnpacitatem naucleromm communi11m

,

q11i falam praxin JPeélare debeml

q11ia tamm nihil in hac m11terta demonjlrare pojfitm, q11in inttllig11t11r n11t11-

r11

tlliH4 linu, q1tam d1iélu e¡11falem rombi pixulis n1111tice, fi1pr11 Jiiperficiem

telluris demmt navli

,

totam hanc doUrinam ad fua principia revocabo. Id

eo /ubentim (ncio, q11od jit hic Lyditu lapÜ

t¡tto 11omutl/.e praxes

a

mtt!tis pamm in Geo–

metría verfatis ptopomwt11r,

&

t¡11te 11liq11andu

a

vero ablied11nt. Ta/is atttem erit ordo htt–

f

ut

libri. Primo pr.emittam nonmdla Theoremala q11ib1u Loxodromi11mm 11at11ram explicabo,

tttm docebo methodum ji1pp11tandamm

tab1~lamm.

Ter;10 ufeu tradam ad direélionem n11-

vigii

,

fala 11tendo additione

,

&

ftbtraE11011e. .f2.!!_11r10 fa!vam omma problemata na1,tic11,

per

jiAIM

,

tangentes

,

&

fecantes

,

detegamq11e errores q11i in h11c materia per medmm pa–

ralld11m committ11nt11r,

&

q11ten11m verA corretlto debeat adh1beri. HtU ergo methodos do*

{ltortbtu propono, factliores_

&

geometrictU libro feq11enti propójittmis. Si enim n111tclemm infli–

t11end1tm fii(ctperem

,

nollem mm arithmetws calmlir mtrtcare, in q11ib1is

11ifi

Jit exerctta–

tifamus potejl in gravtf¡mos errores impingere; faltU praxes goometrictH ea(q11e fac1ll1mtU ei

proponerem. Ji2!!)a tamen Jap1enlibtU,

6-

injipientib11s debitor ji1m, in hoc libro praxes arith–

metiou difjicit1ores propono. In feq11enti Gcometriuu

&

faaiiores tr11dittm1S.

il1lll1ltlD!l'llil1lNJl!11iJWJIJ.tilj1JTirlilW,il1ll.lll1l1Hfllml!l!llllJlllJ

P R O P O S I T I O

l.

Theorema.

De

narnra

lint.t loxodroniic.t

,

quam

dtf<

ribit

11avu

d11ifo e¡ufdem Rhombi

pi:ddu

n11mic4.

Linea loxodromica otiginem Íuam dncir , ex

pra:cipuo navigationum inlhumemo Ícil1ccr ex

paxidc namica. Clarnm c'.iim efl qnod fi fcqna–

mur.eundem rumbum obllquum pixidis nau1ica:

v~rbi

gratii Sudoflum , linea quam decurrer

na~

vis cum omnibns mcridianis ang11l11m graduum

~; c~mprehender;

qua:timus igimr qua:na111

fic ·

1lla lmea , qua: cum omnibus meridianis angu–

lum femireél:um ef!icit,

Diximus fupra rofam pixidis naudcá: exhibere

horizonrem ,

&

lineas romborum

elfo

commu–

nes

feéHo~es ver~icalimn;

cum plano horizonris,

quz pro uídem c1rculis aíli.1mi poffinr. Noran–

dum

ra~en

eundem maximum circulum qui ref–

pell:u al1cujus regionis verricalis alicujus mune–

re

f~ng!1ur

, reípeél:u alterius regionis alrerius

vemc~hs

munere fungi ; verbi gra1ia fi

íolvo

maffilia per Sudeftum, íeu 45 venicalem , dum

1~ulr.llln

progreffus infiíl:endo ícmper eidem ver–

t'.c~li

, randem hic circulus non amplius cum me–

.r1d1ano

a~gu_lum_ eu1~de.m

dncier ,

&

coníequcn–

rer non tndicabtmr a lmea Sudcfü , qua: aliam

vemcalem oílender; quare fi imperarum

¡¡,

111

femper fequar eandem lioeam Sudefii , inirio in-

!iftam circulo verricaii, qui erat

4;

reípeél:u il•

lius horizontis

e

quo profcéhis fom , hunc au-

1em poftea de[eram , q11ia cum a\io meridiano

ad quem ícilicet perveni., non efficit angulum

~

5 gradumn; íed minorem • qnare

fi

dirigar íem–

per eadem linea pixidis nautica:, non pcrcurram

maximum circulum; fed aliam linea111 curvam.

H.ec

d1ffic11lrns jam olim Nonio propofira foic

a

c

eltbri nauclcro in hnnc modum : Rumbus

Orienialis Íen Efl, exhibet circulmn maximum ,

íed duo circuli

fe

bifariam Íecanr

(per

11.r.The...

dofi1)

igitur circulus maximus quem rombus

Ef1u

repra:Íentat, fecat a:q11inoétialem circulmn

A

Q'.iod manife!lum eft ex

eo

quod

~o\

dic.zqlJiM•

ll:ii oriatur in ea linea, ncmpc onatur m rombo

Efl