Liber
l.
vehic, denique pauciora, lcd majora propugna•
cula conftruir.
0¿_
1amvis hanc methodum in erfentialibus non
reprehendam , non video rarionem cur ira fecun–
dam alam negligic, quz camen
breviore1~
defcn–
lionein pra:bec ,
&
in qua cxcicari poílunt cor–
mcmorum fuggcfta , qua: vineam disjiciant.
ARCHITECTURJE
MILITARIS
LIBE R
SE C V N D V S·
De munitionibus regularibus.
.AJ.
e
femnda pars Arcbitec?ur.t
militatú,doc~t
methodttm muniendi (1tjt1fatmt¡tie
,.
Polygoni reg11larú, excepto trigono, tf"ºd ;ta tnepwm
efl
ex natma fiea
,
111 milla
Arte corrigJ pojftt, mrmititmmlfque ta.ntttm ex1gr11 momenti propterea adk1be111r.
Polygonum autem reg11/are 1/111d
efl
Clt/
144
ang11it,& la1era
~qrialia
jiMt. C11m ergo
~
1
Jm/La irreg11lariltfJ ajfec7anda jit mji loct cm unjla1111a
ea~n
exigat
,
omniaque
m11nime11ta ad regulares
.!,_~
11
rtfJ
revocanda jint
;
h1c femndU1
l1ber etlam 1rregrel11rib111 erit
norma, mm irregttlaria
reg11~arib1U
d1rigantur.
Pra.xe~comm11nes
.~r~pono_
, ~11m
experientia
compererim nihil omnino nrgbgend11m
,
tn
hoc prttapue traElaw
'.
tM
1n prtmts accommodato,
qrei in armis trac7and11, magtJ qr111m in .(c1ent11J" verfantur. Nihil ergo fúppon!lm
,
nec ad
11/ia ab aliis !tbrtJ,
&
a111hor1bru petenda principia /e[/orem remittam. Notand11m a111em q11od
tj11amvú improbem eomm cunjili11m
,
q11i archite[/11ram mili1arem difficilimiJ Trigonomelri.:e
placitis implican/, qru. Tyronib111 m11lt11m
facefit
mgotii
,
quia lamen omnib111debitor
fi1m,
indicabo prob!emata
Trig~nometrica
q11ib11S exaEla /111eAYflm
,
&
ang11lomm menfora h11beaJ111':
qr1amviJ nemini authorjim
,
111 in iis immoret11r, eofve 1111di111 q111 c(ifllir1S in hfliefmodi tri-
CÍJ difcip11lo1 ji10J detinent.
.
~-ff!tff!f•@!fi&~M&iii9!
ff¡IJ-{ft@e
ff't
~
PROPOSITIO
l.
Lineam perpendicularem ducere.
Ad lineam BC , per punfü1m A ducenda pcr–
pendicularis proponimr. Euclides propolitione
11.
libri primi, jubet hinc inde abfcindi lineas
a:quales AB, AC, apertoque circino ex punél:is
B
~-C m.ccn~ris
duos arcus eadem apertura def–
c.nb1 , qm fe m punél:o D imerfeccnt demonll:rat
lme?m DA perpendicularem clfe ad AB.
. !"fzc praxis fupra chartam bene focccdir, diffi.
cilius in folo perficitnr, nili ei aliquid addacur,
quare abfciffis hinc inde lineis a:qualibus AB,AC
cordam aliquam duplica nocaco punél:o medio ,
duo~ufque
extrcmiracibus in punll:is B
&
C fir–
;a11s' cordam zqualiter extendc , punél:um me–
d:~1.:1.~~~élo
D inliftec, eritque linea DA perpen-
Secunda praxis D proponic extra lineam, ex:
quo ducenda eft perpendicularis ad BC. Ex pun–
do D ur centro , defmbatu• circulus fecans li–
'[am.
/ / /.
neam BC in pun€tis B,
&
C, dividarnr linea BC
bifariam in A, linea D A perpendicularis eric. -
Hrnc praxin ira in folo exequeris. Nocam in me·
dio corda: duplicaia: inu{bm . in punll:o D collo–
cabis , cx:enliíque xqualicer corda: pambus, do–
ncc cxrremirares linea: BC infiíl:am, habcbuntur
punél:a B,
&
C. Diviíaqne linea BC bifariam in
A, habebicur pcrpendicularis DA,
Terrio
li
perpendicularis ducenda
lit
p·er pmt•
él:um A,in exrremicare linea: coníl:itutum: Ex quo–
libet punél:o D, incervallo DA deícribaturcircl1•
lus fccans lineam AB in punll:o B , ducacur reéh
BDC , fecans circulum in panél:o C , clarum
e~
lineam CA perpendicularem elfe ad AB,
lea in
fo
lo idem pra:íl:abis, duplicata corda, no–
tatoque punél:o ejus medio , extrema ejus in pun·
l\is
A
&
Il uccumque collocabis ,
habebifqu~
punél:um D , eandem cordam in lineam reél:am
BDC extende, per B
&
D cranfeumem exrende,
habebifque pun&lm C,
&
linea CA perpendícu·
la~is
cric . feu angulus CAB
.JI!
femicir~ulo
rellus
ene. Poffiunus ítem perperWftcularem m (olo
~u
cere , fcmicirculo , íquadra, circino proporuo–
num , aliiíque inftmmencj¡, uc doccbirnus.
C
PROPO