Table of Contents Table of Contents
Previous Page  51 / 798 Next Page
Information
Show Menu
Previous Page 51 / 798 Next Page
Page Background

Liber

1

l.

-

21

1

Si arcus C F dividarur bifariam in G, linea

CG

eric lacus dodecagoni,

;

Si arcus FO a:qualis liar arcui CF, eric li–

nea

e o

lacus crianguli a:quilaceri.

+

Pro quadraro ducatur diamerer AC,& per–

pendiculans BD, linea CB,qua: duél:a non e!t, cric

hms quadrari (

per G.4.Eucl.

)

J Q!iare divifo arcu BC bifariam in I, cric 1i•

nea

e

1

htus oél:ogoni.

G

Pro Penragono femidiamerer E C bifuriam

dividacur in

L,

mm ex L uc cenero inccrvallo LB

dcícribe arcmn BM, linea BM e!t larus penragoni,

quare ii BN a:qualis lit BM, habebis lacus penca–

goni applicarum circulo.

' 7 Diviío arcu B

N

bifariam in O habebirur

lams decagoni.

8 Pro Epcagono, CR Ccmillis linea: CO erit

lams eptagoni.

9

Enneagonum rerciam panem arcus CO af–

fumic nempe

e

I.

Eadem lacera polygonorum inveniunruc in

Cc–

micirculo, ope fequencis propoíicionis qua: do–

~ec

>

quot gradus

a

lacere cujuícumque polygoni

fubrendanruc , cranllacis enim iis gradibu

s in

cir–

cuh1m cui inÍCribendum en polygonum cxh.be–

tur eius lams.

Communicer inícribunmr lacera polygono nm

in compaffo proporcionali, h<?:c camen praxis per–

tinec ad cius ufos.

fflt·~·'ifi··!fi-ff'.I

fftf<i!9

Efi~

·-i@·t<lt

PROPOSITIO

V.

Ang11lttm centri

;,,

9uolibet Polygono invenir<.

é

e

B

Ha:c pcopolicio facillima e!t,

&

in muIris mi–

lis. Numerum

;Go

divide per numerum lacernm

polygoni propoíici , quociens cric numerus gra–

dum:i

'.JLIOS

conrincc angulus cenrri.

U

c in crigo–

no d1v1ÍO numero ;60

(ptr

;.)

habes 110, in qua–

~raco

diviío eodem numero (

per

4.) habes

90

,&

na

de reliquis.

.Jnguli w11ri.

Ill. IV. V. VI. VIL VIII. IX. X. XI. XII.

110.

90.

71. 60. JIT• 4J• 40.

0

36.

p-!,.

;o.

i)j!!l1lfi!!'!ltlll1l.!ltJll1l!ltlll1l!ltJlll1llZ!ll!ll!ltll1Ji.1lllllllll1l1lll1lllll1l

PROPOSITIO

VI.

Ang11lum

circ11mfertnt~1. i~

quolibet polygono

reperirere.

Vide

figuram

przccdcatcm.

Voco angulum circumferentia: eum quem lace–

ra polygoni compcehendunr uc in hoc penragono

angulus ABC.

Subcrahe angulum cenrri prius cognicum ex

180, reliquus erit angulus ABC, uc in

pene~

000

fubcrahe

7L

ex 180 ' h•bcbis an ulum ABCg

8

graduum.

g

1o

Demon!trario. Eíl: fatis claca,nam in trian

ll·

lo A

O

B

om~1cs

anguli limul fumpci zqualcs

f~nr

duobus reébs

(ptr;

L. 1.E11cl.)

Si

ergo fubtrahas

ex. duobus rcébs fou ex 1

~o

grad1bus,angulú c

11 _

en

ADB,

c~íl:abunc.

anguh DAB, DBA, quibu;

ú–

mul fumpets zquahs eíl: angulus ABC.

COROLLARIUM

l.

1-labebitur ítem femiangulus ciccumferencia::

DAB, diviío bifariam angulo circumferencia: , uc

in pencagono J4.

C O R O L L

A

R 1U M 1 l.

Habebis icem angulum quem linea femicolli

cum capicali comprehendir,nempe.ngulum FEA,

li

C.

m1angulum polygoni J 4 Cubcrahas ex 180.

Ang11li cirmmftrentidl.

III. IV. V. VI. Vil. Vlll. IX X. XI.

xrr.

60.

90.

108. 110.

118;,.

1

H.

140.1,,4.148f;.1JC.

Semi-Anguli circ11mftrenti&?.

;o.

4'5.

54·

60.

6++· 677. 7º·

7L.

74-I,.

75•

Angrtli femicol/i wm capitali.

1

J0.135. 116.110.115~. 1n-i--.11 0. 108. 105~.101.

mill!lll!!j¡j¡:íQ!Q!l~ll!!!lll1lll!ltl~!lí21lllll!iS!!!ill111.l'll.ll1\¡¡;¡jl!ll

P R O P O

S 1T 1

O

V 1

I.

Supra

lintam datam

,

Polygon11m quode11mque

regulare def<ribtrt.

Propoíicio quarta docec methodum defcriben..:

di in circulo polygoni rcgulacis, ica

m

Cuppona–

cur daca femidiamecec circuli,qu<?: etiam en Ícmi–

diameter polygoni. H<?:c vero fupponit dari larus

polygoni, iive incer!ocis,

ii~~

excernt. Hzc.praxis

m ilis eíl: excrucnd1s munmombus, qua:m ergo

h<?:c propolitio ex lacere femid1ameuum.

.

Proponicur linea

A

B , fupra quam deímben•

D

dum. lit quodcumque polygonum reguf2re

verb~

grana exagomun, fianc anguli ABC,

C~D,

linguh

a:quales angulo fomi,circumferenri:i:, enrque pun–

d:um C cencrum circuli, in quo linea AB em

Ja.

tus exagoni.

Demon!tr2tio. Cum anguli ABC, CAB

fu~t

linguli graduum 60, fublatis 110 ex 180 rellab1t

angulus ACB 60 graduum, quare faél:o ex C cir–

culo , arcus A

B

cric 60 gcaduum , invenieturque

fexcies in ciccumfereocia circuli.

C

iij

PRO

PO