EL -E'.MENTOS
· Fig.
én
el
caso propúesto e·s igual
á
··cero, porque
D
~
9
o
O
,
·r :9
o.
suponiendo la semiduradon
4
2
1
la menor de todas.
B-us~
cando, pues, este logaritmo entre los de los senos , saldrán
·3
º · :t
1
1
2 · 2
11
para
la inclinación · en diclio caso , ha–
ciendo
uso
de la seccion ·eliptica. Si del mismo lógaritino
se resrára
el
logaritmo seno de la- inclinacion süponiéndo..;
fü
conocida , ·saldría ·el ·logaritmo sen de
D
ó
de la dis-·,
tanda de Júpiter al nudo :; y -conociend<? par
otra plrte
el lugar.·
de
.Júpitér
sería
fadl.
de determinar
el
lugar
del nudo.
'
1 2 I
t
·Parf'
sacat- la ínclínádon #
tlel
4.º
Satélite,
supongamos
-"que ..
finalicen,
si.iseclipses
quando Júpiter
ésr-á–
á
5
5
°
1 1
1
1
0
11
de,
'los nudos , éonforme
se
saca supo-·
ñiendó .de
2.,º
3-
6
1
la i11clinacio
1
n en el -círcufo ·, será menes_;
t~r qu~
CÁ
_
ó
t ·~
sen
·I
~
sen
-D
sea ig~1al
.á
CD:___
::.
P~ró
sI
sumarros
·el
logaritmo
de
t,
esto es,
1,428
9
5
4
con
el
del seno
de.,
5º
I 1
1
I
ó
11
.:__
D;
y
·1ós restamos de-
éf
de :: , sacaremos sen
I,
-Ó
el ·
seno
de
2
°
·2
4
1
-
5
1 '\
esta
es.
la ve-rdadera inclinacíon de esta órbfra · en
lugar- de·· 2
°
3
6 ~
,que
se
sacáríart
en~
la
hypótesí
circular ( ·
1 2
o
6 '
)."
_ -
:t
2 I 2 ·
Las inclinaciones que se i~1fieren
de estas dos.
hypótesis , están con corta diferencia en la razon
de
1
3 ,
á-
r 4 ; es, pues, facil iri.f~rir
la
una ' de
la
otra.
·-En la
ra.::
bla de· los dementos se podrá reparar_que la diferet1cia
llega
á -
1
6
1
I
8
(I
respecto del segundo Satélite ,
y
esto
es
im–
portante en los. cálculos de reduccio·n ,
ó
del movimiento.
de los nudos .. No se origina de aquí diferencia alguna en
·la