ELEMENTOS
Fig.
como el
seno
de la distancia
Q,V
del sol al lugar
don-de se .
hall~ba quando la aberracian
en
dedi.nacion era·
nula;
y .
la
aberracion máxim1
multiplicada
por
el
seno
del argu–
ment:o
anuo ( 4 5 8
)
dará
la aberracion actual
en
ascen–
sion recta°'
Se puede
sa.car
una espresion mas s.encilla -de
1~
aberracion
máxima
en as.censio11 recta
con
hacer
uso .
del
ángulo
M
que
forma la eclíptica co.n el
meridiano_
-~ I.
?:.¡t._1e
pa~
por la
estrella.
El
punto
M
es el _ lugar
don-
4-e se halla el s._ol q~1ando la aberracion en ascension rec-
>
ta es· máxima ; porque_
del triáng.ulo
SLM
rectángulo en
L .,
se saca esta pr_op9rcion :
R
:
s.enSL
:-:
tq.ngMSL
:
tang
ML
(_
~ll.. 7
o
z
J ,
que
viene
á
ser la
misma de
an–
tes ( 4
S
3 } •
L
es d
lugar del sol quando- la estrella
está en conjuncion,
y
la aberracion en .longitud es máxi–
ma; así,,
MI:
es igual á 'la_,liferencia de los puntos
donde
estas,
dos.,. abenraclqne~
son
nulas. ;
por consiguiente hallare-.
fllOS
la . aberracion máxima en ascension recta ( . 4 8 4
).
20
11 •
cos
MSL
l
.
d
l
ll
20
11
~
cos
,.\1SL
~
-cos
M.¡;-- .
en a reg10n.
e a estri a ,.
y
cos
ML.
-cos
SA
sobre.
el_
equadoJ; (
5
4 ).
Pero del
.-triángulo
ft:!SL
rectángu-
~o en
L,
sac~mps cos
MSL
==
sen
M.
cos
ML
(
in.
7
o
1 );
l
b
•
•
l
20
11
.senM
· uego con su
sqtmr
e$te va -or sacarern9s.
~s
S.A. -:-:-·
que se~
rá
.la
espresion-
de la
·aberracion
.máxima en·
ascension
r.ec~
ta. El
ángulo
M e~~
facil
de hallár,
pórque. en todas la:S
ta~
\)las
astronómicas se encuentra el
ángulo
que la .e.díptic~
forma con .el mer.idiarro respecto
de.
cada
.punto
M.
.
J
4 8
6:. . _
fip.almen
te , el
.q.uequisie¡e_determina1r la
mi.s~