Table of Contents Table of Contents
Previous Page  578 / 1042 Next Page
Information
Show Menu
Previous Page 578 / 1042 Next Page
Page Background

6[0

F

L

u

X 1

o

N

s.

-~-}

:. AD

(1)::

BC

(b)

:· GD

(y)

wchavey==_~_,

and

'fhe value of

~=:

'_.

cxprcffed in a feries, is

7

+

(+

x

(C;i'\{

~

.

b;

o. .

-

ronfequently"

(==y x) == -_ ==bX.-xx+·.'x-

.!-_~Xx '+!:_-~_-~

Xx,+2 __

L -

l

+ x

2,l

2a(

s,,

4ael Sale

16,'

16ac

--- --

xJ~+ ~'x -

&,.

Whcnce, BG DC, the area il(df

1 6:~-I;alcXx6+&(.

Which value bting there- will be ==

b

X

x

_

~

+

.::. _~

+

~,

(;c.

which

-

-

(

2

3-

4

5

fore mulliplied by

x"x,

and the fl nenl taho by Ihe was lo be fonnd .

4 ):'''+1

-.--1

xn+l

.

h

l

r

l

r

common melhod) we gel

=~-+

¡ __

X

-+

+

Hence 1l appears, 1 at as t ¡e,e areas lave Ihe ¡¡me

n+ IX,

u

2.&

n

3-

properties as IOp,Millllns,

tlm

feries gives ao eafy metbod

3a

1

1

x"t '

of compuling logarilhOls; and Ihe fiaent may be found

8(¡ -

4aCi

- Saje

X

n

+

5

+

by meaos of a lable of logarithms, willlOUI the Irooble

_ í

a_

__3_

_1_

__1_

x.,+

'

+

LC.

of ao i"bnile feries: and every fluxioo "hofe Buent

a-

<.:1

~rees

wilh aoy kn'owo logarilhOlic explclfion, may be

16,'- 16ac' -

16a;,J -

160'c

n+7

founel Ihe (ame IVay. Hence Ihe flueOls of fluxioos of

P~O D.

J.

r o¡nd Ih,

ar(a

any rurv(.

R

VLB .

Mulliply Ihe ordinale by Ihe

R~xion

of Ihe

abfciffa, and Ihe produll gives Ihe flllxion of Ihe

~gure,

whofe fiuenl is Ihe area of Ihe figure.

EUMP . l .

Fig.

S.

Let Ihe enrve ARMH, who(e

area )'OU wil! find, be Ihe common parabola. Lel

u

re–

preCeot the area, and ,; ils fluxion.

In whieh ea(e the rel'lioo of AB

(x)

and BR

(y )

be–

ing expreffed by

y'

=

ax

(where

a

is Ihe parammr) we

I .

.l

.

tbeDee gct}

=

a

T

x'

;

and lherefore

u

= RmHB (=

y

x)

I

f.

I

1

I

I

=

aTx'-x:

wheDee u=i-X

OTXT

=

T

a

T XT

X

=T)'x

(be-

caufe

a

~.T

=

y)

=

T

XAB XRR:

h~nee

a parabola

i~

;. of a rellaogle of the Came bafe and altitude.

EXAMP.

2.

Lellhe propofed curve CSDR

(6g. 9.)

be of (ueh a nature. Ihal (fuppoC,ng AB unilY) Ihe fum

of

the areas CSTBC and CDGBC an{lVering

10

aoy

1100

propofcd

abfci{f~s

AT and AG, {hall be cq ual

10

lhc area CRNBC. whore correfponding abCeiff.l AN is e–

qual

10

ATxAG, Ihe produél

01'

Ihe mea(ures of Ihe

two former abfciffas.

Fidl, in order lOdelermineIhe eqnalicn of Ihe curve,

(whieh mufl be known before the arca can be found) let

Ilie ordinales CD and NR move paralld

10

IhemCclves

lowards

HF;

and then having pUl

GD=y,

NR= z,

AT= ••

AG=I,

and

AN=u,

Ihe fluxioo of lile area

COGB will be rrpre(enleu by,;, aod Ihat of lhe area

CRNB by

ZI;:

\V~ich

IIVO ;xprellions mufl, by the

nalure of the prchlem, be

e~ual

10

~aeh

other; bccaue

the Imer

area

CRN8 exceeds Ihe former COGa uy

the area CSTB, which il

her~

cor,C,rlcred as

a

cooHant

quanlity: and il is (vident, Ihal

I\VO

expreffioos, Ihal

differ only by a cooH, nl quanlily. mufl . Iways have e–

<¡ual Ruxions.

Since, Iherefore,); is

=,,;,

anJ

U=OI,

by hypolheC,s,

jI follows, Ihal." =.;, and Ihal Ihe C,rfl eguation (by

CubHiluling for

11)

lVill beeome );

=

n

z;, or

y=oz,

or

hHly)'/=zal.

IlI dI

is, GOXAG=NRXAN : Ihere–

fore,

G~

: NR :: AN : AG; whence il appears, Ihat

every ordlnale of Ihe curve is reciprocally as ils corre–

Cponding abfciO'.

NOVl,

10

C,lId Ihe are. of Ihe cu rve (o ddcrmined

pUIAB::; I, UC.:: v, aod

BG=.r:

Ih,o, fioce AG (I+.,j

Iht follolVi ng forms

~re

deduced.

T he fluenl of

~---=

=hyp.log. of

'+v"=!::,,'

¡

. .v

X1

±.tJ'

.

.

of

~==-

=

hyp. log.

aXx+V2aXt.'

¡.

V2ax+••

of

2~X

,

.

-.

a+ .

v

hyp. log. of

;;=;;

212~

a-v,

l±7i

aod of

""'7==

= hyp. log.

-==.

Xva¡±'ll.

a+V

4l1

::t:x'

PiOD. 2.

ra d,lumine Ih( Imglh'¡cunm.

Fig.

5.

Bec.llfe

Cd(

is

a

righl.angled Iriangle,

Cd'

=C,'+d,'

;

wherefore the fluxions of the abCcill'a and

ordinale bciog taken in Ihe fame lerms and fquared,

their fum gives the fquare of the fluxion of tite

cur~e;

whofe root being extraéted, aod Ihe fiucO! laleoi givcs

the length of Ihe curve.

EXAMP

To find the lenglh of a eirele from in tan-

gen!. Maké the "dius AO (fig.

5.)

=4, the tangenl

of AC = 1, aod its {eeaol =

1,

Ihe curve = z, lnd ils

fluxion =

~;

beeau(e Ihe triangles OT C, O

CS,

are Gmilar,

01' :

OC: : OC ::

OS;

wheDee

OS

dl.

1

(1 1

=_, ano SA=a-

~ =a-.;=--=;

whofe

1

1

0'+1'

fluxion is

~;

aDd becaufe rhe triaogles

OTC,

0'+1";-

dC,

are Gmilar, TC (=1): TO (=';"+(') ::

C(

=

( :':'~-, )

: C

d

=~,

=

fluxion

oC

Ibe curve.

, Q'+I')-r

a

+1 .

Now by convertiog Ihis iDIOan infinile (eiie!, we have Ihe

.

.

I'i

tJi

t

Ó ;

,

flUXlO1I

of Ihe CUl'ye =1-_ + _ _ _ . ,

ve.

and eoo-

u' al

Q

1;

l '

1)

(9

- AR

fequendy z=l-

_+ _ _ _

+-.'

be.

-

v

3.'

p'

7a'

ya

Whcre, if (for

c~ample'

fake) AR be ftlppo(ed.

an

arch

uf 30 c!cgrees, :lOd

AO

(10 I'ender Ihe

o~alron

more

caey) be pUl

=

I1l1il)', \Ve Olall have 1

=

v \· = · í77.15~2

(becauCc

ob.¡I:

vR

(i) ::

OA

(1):

AT

(1)

=

Al

Whenr.e,

IJ

(=IXI'=IX ~)

= .1924500

Il (=tJXI'= T ) = .064 15°0